Differences
This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
mathematics_machine_learning_internship_summer_2025 [2025/03/26 12:59] – Diaaeldin Taha | mathematics_machine_learning_internship_summer_2025 [2025/04/02 14:46] (current) – [Calendar] Diaaeldin Taha | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | ====== | + | ====== |
===== Organization ===== | ===== Organization ===== | ||
Line 5: | Line 5: | ||
* **Organizer**: | * **Organizer**: | ||
* **Time and Location**: Two internship-wide organizational meetings will take place at **MIS MPI A3 01, Thursdays 11:15 - 12:45**. Instructions for accessing A3 01 are available [[https:// | * **Time and Location**: Two internship-wide organizational meetings will take place at **MIS MPI A3 01, Thursdays 11:15 - 12:45**. Instructions for accessing A3 01 are available [[https:// | ||
+ | * **Moodle**: TBA | ||
* **Module Description**: | * **Module Description**: | ||
* **Course Plan Entry**: [[https:// | * **Course Plan Entry**: [[https:// | ||
* **Study Programs**: | * **Study Programs**: | ||
* B.Sc. Informatik 6. Semester [Kernmodul] | * B.Sc. Informatik 6. Semester [Kernmodul] | ||
+ | * B.Sc. Mathematik [Projektpraktikum] | ||
* M.Sc. Data Science 2. Semester [Wahlpflichtbereich Datenanalyse] | * M.Sc. Data Science 2. Semester [Wahlpflichtbereich Datenanalyse] | ||
* M.Sc. Informatik 2. Semester [Kernmodul] | * M.Sc. Informatik 2. Semester [Kernmodul] | ||
- | | + | |
===== Overview ===== | ===== Overview ===== | ||
- | This is the first iteration of the " | + | This is the first iteration of the " |
The deliverables include: | The deliverables include: | ||
Line 26: | Line 28: | ||
===== Calendar ===== | ===== Calendar ===== | ||
- | * **Organizational meeting 1/2**: MPI MIS A3 01, Thu 09.04.2025, 11:15 - 12:45 (tentative) | + | * **Organizational meeting 1/2**: MPI MIS A3 01, Thu 10.04.2025, 11:15 - 12:45 (tentative) |
- | * **Organizational meeting 2/2**: MPI MIS A3 01, Thu 16.04.2025, 11:15 - 12:45 (tentative) | + | * **Organizational meeting 2/2**: MPI MIS A3 01, Thu 17.04.2025, 11:15 - 12:45 (tentative) |
* **Mid-semester presentations**: | * **Mid-semester presentations**: | ||
* **End-of-semester presentations**: | * **End-of-semester presentations**: | ||
Line 34: | Line 36: | ||
===== Topics (Tentative) ===== | ===== Topics (Tentative) ===== | ||
- | This list may be updated with more projects before the organizational meeting. Participants who want to propose projects that fit the scope of the internship can contact the organizer. | + | This list may be updated with more projects before the organizational meeting. Participants who want to propose projects that fit the scope of the internship can contact the organizer |
==== Project 1: AI 4 Mathematics ==== | ==== Project 1: AI 4 Mathematics ==== | ||
Line 50: | Line 52: | ||
**References**: | **References**: | ||
* Davies, Alex, et al. " | * Davies, Alex, et al. " | ||
+ | * Wagner, Adam. “Finding counterexamples with reinforcement learning.” (2021). | ||
- | ==== Project 2: Causal | + | ==== Project 2: Causal |
**Mentor**: Diaaeldin Taha | **Mentor**: Diaaeldin Taha | ||
Line 57: | Line 60: | ||
**Members**: | **Members**: | ||
- | **Description**: | + | **Description**: |
- | **Prerequisites**: | + | **Prerequisites**: |
+ | * Familiarity with machine learning or deep learning fundamentals helpful but not mandatory. | ||
+ | * Interest in learning about causality and its application in deep learning. | ||
**References**: | **References**: | ||
Line 65: | Line 70: | ||
* Kaddour, Jean, et al. " | * Kaddour, Jean, et al. " | ||
+ | |||
+ | ==== Project 3: Optimization Landscapes in Machine Learning ==== | ||
+ | |||
+ | **Mentor**: Diaaeldin Taha | ||
+ | |||
+ | **Members**: | ||
+ | |||
+ | **Description**: | ||
+ | |||
+ | **Prerequisites**: | ||
+ | * Familiarity with gradient descent and basic optimization theory. | ||
+ | * Curiosity about the interplay between learning dynamics and mathematical structure. | ||
+ | |||
+ | **References**: | ||
+ | * Li, Hao, et al. “Visualizing the Loss Landscape of Neural Nets.” NeurIPS (2018). | ||
+ | * Sagun, Levent, et al. “Eigenvalues of the Hessian in Deep Learning: Singularity and Beyond.” arXiv: | ||
+ | * Chizat, L., & Bach, F. “On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport.” (NeurIPS 2018) | ||
+ | * Fort, Stanislav, et al. “Deep Learning versus Kernel Learning: an Empirical Study of Loss Landscape Geometry and the Time Evolution of the Neural Tangent Kernel.” NeurIPS (2020). | ||
+ | |||
+ | ==== Project 4: Learning on Manifolds ==== | ||
+ | |||
+ | **Mentor**: Diaaeldin Taha | ||
+ | |||
+ | **Members**: | ||
+ | |||
+ | **Description**: | ||
+ | |||
+ | **Prerequisites**: | ||
+ | * Some exposure to differential geometry or calculus of curves and surfaces is a bonus. | ||
+ | * Interest in geometry, optimization, | ||
+ | |||
+ | **References**: | ||
+ | * Bécigneul, G., & Ganea, O.-E. “Riemannian adaptive optimization methods.” ICLR (2019). | ||
+ | * Bronstein, Michael M., et al. " | ||
+ | * Sanborn, Sophia, et al. " |